

SHORT-TERM STABILITY OF DILUTED SOLUTIONS OF THE MONOCLO-NAL ANTIBODY DARATUMUMAB

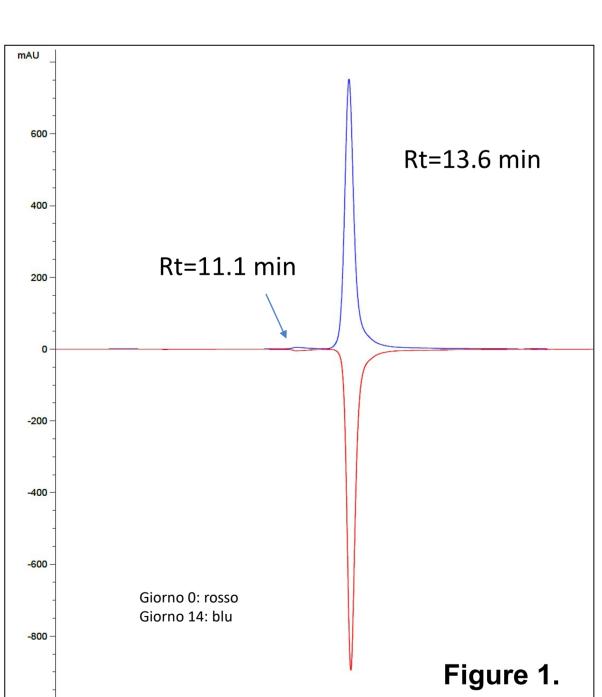
Greta Mangoni 1, F.Selmin 2, L.Camuffo 1, M.Rivano 1, L.Cancanelli 1, M.Piccoli 1, L.Cervi 3, F.Cilurzo 2, P.Minghetti 2 1. School in Hospital Pharmacy, University of Milan, Via G. Colombo 71, 20133, Milan, Italy 2. Department of Pharmaceutical Sciences, University of Milan, Via G. Colombo 71, 20133, Milan, Italy 3. ASST Grande Ospedale Metropolitano Niguarda, piazza Ospedale Maggiore, Milan, Italy

Background and Importance

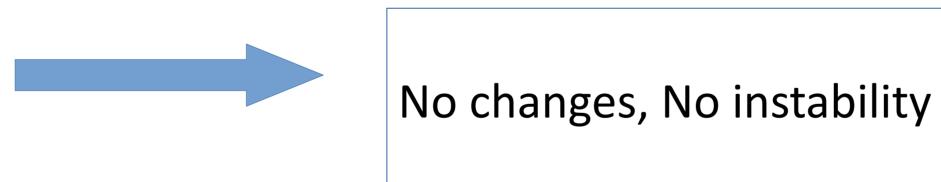
Monoclonal antibodies (mAb) are biotechnological products mostly used as ther-apeutic agents. Because of their nature, mAb may go through a variety of chemi-cal and physical degradation processes upon handling. For this reason, ex-tended in-use conditions are not included in stability assessment prior to regula-tory approval. Daratumumab, a CD38-targeting, human IgG1 K mAb, is largely used in the treatment of multiple myeloma. After dilution in saline (0.9% sodium chloride) solution using the appropriate aseptic technique, it is reported to be physically and chemically stable for 24 h at refrigerated conditions (2-8 °C) pro-tected from light [1]

Aim and Objectives

To evaluate the physicochemical stability of daratumumab diluted at clinically relevant concentration over a 14-d period


Materials and Methods

Daratumumab (Darzalex®, Jassen Biotech, B) was diluted to concentrations of 1.2 and 2.0 mg/mL in low-density polyethylene (LDPE) infusion bag in saline so-lution for intravenous injection (B. Braun, Italy). To determine changes in phys-ico-chemical properties over a 14-day period, various methods were used: size-exclusion chromatography (SEC-HPLC), dynamic light scattering (DLS), nano-particle tracking analysis (NTA), turbidimetry, pH and osmolality. They were se-lected based on the preliminary results of a forced degradation study [2].


Results

All samples remained clear with no precipitates or particulate matter detected with the naked eye.

- TURBIDITY: No change was observed
- **PH:** range 5,53-5,85,
- OSMOLALITY: range 296-313 mOsm/Kg,
- SEC-HPLC:

SEC-HPLC did not show the formation of aggregates or frag-mentations. The ratio between the major peak (Rt= 13 min) and a minor signal (Rt=11 min) remained constant over time

•- DLS

No clear trend in the presence of sub-visible particles was observed by DLS.

Indeed, the main peak of daratumumab was detected at about 13 nm which accounted for up 98% and 95% for 1.2 mg/mL and 2.4 mg/mL solution, respectively.

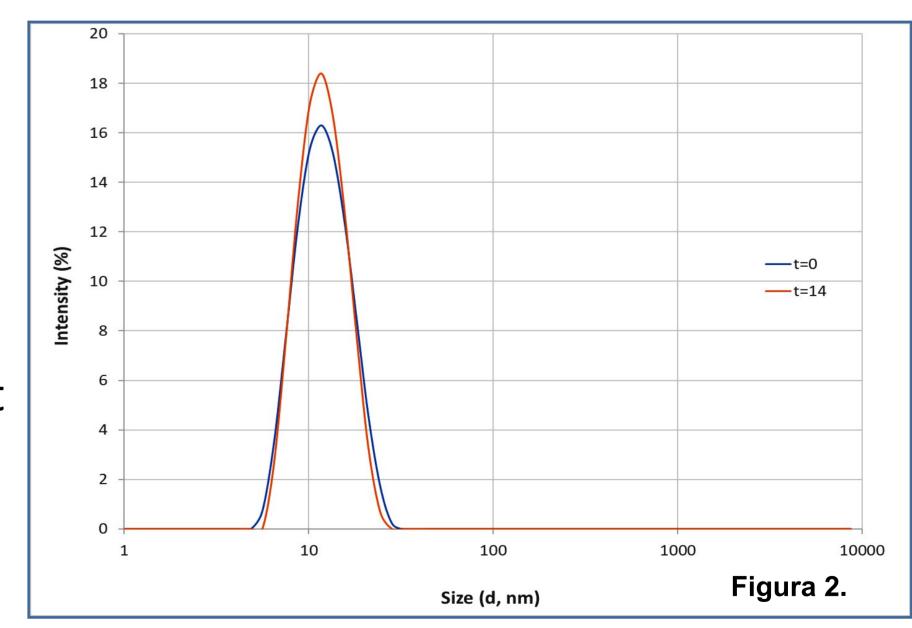


Figure 2. 1,2 mg/ml day 0 (blue) and day 14 (red).

- NTA

NTA revealed a particle level of about 60X106 particles/mL for the physiologic solution used as reference.

Conclusions

No physico-chemical variations were evident in daratumumab solution at 1.2 mg/ml and 2 mg/ml stored in LDPE infusion bag at 2-8 °C. The evaluation of bio-logical activity is required to confirm the extended in-use stability.